Control of membrane sealing in injured mammalian spinal cord axons.

نویسندگان

  • R Shi
  • T Asano
  • N C Vining
  • A R Blight
چکیده

The process of sealing of damaged axons was examined in isolated strips of white matter from guinea pig spinal cord by recording the "compound membrane potential," using a sucrose-gap technique, and by examining uptake of horseradish peroxidase (HRP). Following axonal transection, exponential recovery of membrane potential occurred with a time constant of 20 +/- 5 min, at 37 degrees C, and extracellular calcium activity ([Ca(2+)](o)) of 2 mM. Most axons excluded HRP by 30 min following transection. The rate of sealing was reduced by lowering calcium and was effectively blocked at [Ca(2+)](o) </= 0.5 mM, under which condition most axons continued to take up HRP for more than 1 h. Sealing at higher [Ca(2+)](o) was blocked by calpain inhibitors (calpeptin and calpain inhibitor-1) indicating a requirement for type II (mM) calpain in the sealing process. Following compression injury, the amplitude of the maximal compound action potential conducted through the injury site was reduced. The extent of amplitude reduction was increased when the tract was superfused with calcium-free Krebs' solution (Ca(2+) replaced by Mg(2+)). These results suggest that the fall in [Ca(2+)](o) seen following injury in vivo is sufficient to prevent membrane sealing and may paradoxically contribute to axonal dieback, retrograde cell death, and "secondary" axonal disruption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Biodegradable Polymers on the Rat's Damaged Spinal Cord Neural Membranes

     The overall goal of this study was to identify the appropriate biomaterials able to facilitate the regeneration in rat's injured adult spinal cord. Acute damage to axons is manifested as a breach in their membranes, ionexchange distortion across the compromised region, local depolarization and even conduction block. It would be of particular importance to interrupt the progress of events h...

متن کامل

Effective Repair of Traumatically Injured Spinal Cord by Nanoscale Block Copolymer Micelles

Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(d,l-lactic aci...

متن کامل

Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration

Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...

متن کامل

Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration

Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...

متن کامل

Regeneration of Sensory Axons within the Injured Spinal Cord Induced by Intraganglionic cAMP Elevation

The peripheral branch of primary sensory neurons regenerates after injury, but there is no regeneration when their central branch is severed by spinal cord injury. Here we show that microinjection of a membrane-permeable analog of cAMP in lumbar dorsal root ganglia markedly increases the regeneration of injured central sensory branches. The injured axons regrow into the spinal cord lesion, ofte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 84 4  شماره 

صفحات  -

تاریخ انتشار 2000